google.com, pub-5405090408545324, DIRECT, f08c47fec0942fa0 Nasa Discovery: dezembro 2020

DA LUA ATÉ MARTE EM APENAS TRÊS MESES

terça-feira, 15 de dezembro de 2020

Cancer and Heart Studies, Spacesuit Swaps Aboard Station Today

 

Cancer and Heart Studies, Spacesuit Swaps Aboard Station Today


Four Expedition 64 crew members are pictured relaxing after a meal at the end of the work day inside the Unity module.
Four Expedition 64 crew members are pictured relaxing after a meal at the end of the work day inside the Unity module.

Life science continues ramping up aboard the International Space Station as the Expedition 64 crew explores cancer therapies and heart conditions.

NASA Flight Engineers Kate Rubins and Victor Glover set up research hardware to create high quality antibody crystals Thursday morning for a new cancer study. The space medical research could accelerate the development of advanced therapies on Earth that target cancer cells.

Rubins then spent the afternoon servicing samples for the Cardinal Heart study that observes microgravity’s affect on aging and weakening heart muscles. Glover participated in ultrasound eye exams with fellow Flight Engineers Shannon Walker and Soichi Noguchi.

NASA astronaut Michael Hopkins, with assistance from Noguchi, spent the day swapping U.S. spacesuits inside the SpaceX Cargo Dragon resupply ship today. One spacesuit was launched to the station on Sunday ready for operations another will return to Earth next month for maintenance.

Station Commander Sergey Ryzhikov configured gear inside the Poisk mini-research module before working on the Zarya module’s ventilation system. Flight Engineer Sergey Kud-Sverchkov swapped fuel bottles inside the Combustion Integrated Rack that enables safe research into fuel and flame studies.

FONTE - NASA

Heart Research and New Toilet Installation on Station Today

 

Heart Research and New Toilet Installation on Station Today

Expedition 64 Flight Engineer Kate Rubins works inside the Life Sciences Glovebox conducting research for the Cardinal Heart study.

Expedition 64 Flight Engineer Kate Rubins works inside the Life Sciences Glovebox conducting research for the Cardinal Heart study.

Cardiac research and orbital plumbing were the Monday highlights for the Expedition 64 crew aboard the International Space Station.

Flight Engineer Kate Rubins peered through a microscope at heart tissue samples today for the Cardinal Heart study. The microgravity study may provide new insights and advanced therapies for heart conditions on Earth and in space.

For the Vascular Echo experiment today, Flight Engineer Victor Glover strapped on a Doppler probe to his right leg to scan his femoral artery during a light exercise session. The cardiovascular study, running since March 2015 on the orbiting lab, is looking at how living in space stiffens the arteries.

A brand new, advanced toilet, delivered Oct. 5 on the 14th Cygnus resupply mission, is being installed on the space station today. NASA astronauts Michael Hopkins and Shannon Walker put on their plumber caps today to assemble and install the Universal Waste Management System in the Tranquility module. The station’s second space bathroom was designed to be better integrated with water systems, as well as smaller, lighter, easier to use and more comfortable.

In the Russian segment of the station, Commander Sergey Ryzhikov and Flight Engineer Sergey Kud-Sverchkov focused on cargo transfers and inventory updates. The duo is packing the Progress 76 resupply ship with trash and discarded gear for its departure from the Pirs docking compartment in February.

Early Saturday morning, an unexplained power glitch resulted in a loss of power to some International Space Station systems that are operated by one of eight power channels for the complex (4B channel). The crew was never in any danger, and the affected systems were repowered in a short period of time by one of the other station’s power channels (4A).

As of Monday morning, all impacted station systems are operating normally while flight controllers in Mission Control review data to try to assess the cause of the problem and a forward plan of remedial action


NASA’s Supersonic X-59 Assembly Team Marks Wing Milestone

 

NASA’s Supersonic X-59 Assembly Team Marks Wing Milestone

A panel of the dark-colored skin of the wing of NASA's X-59 airplane is laid in place over the wing's interior framework.
A panel of the dark-colored skin of the wing of NASA’s X-59 Quiet SuperSonic Technology airplane is laid in place over the wing’s interior framework for permanent attachment. The volume underneath will serve as a fuel tank. The X-59 is under construction by Lockheed Martin at the company’s Skunk Works factory in California.
Credits: Lockheed Martin

Whether you’re building a house, crafting up some do-it-yourself holiday gifts, or even putting together a plastic model airplane kit, there inevitably are assembly milestones you reach that are considerably more satisfying to reach than others.

A techniian performing an inspection of the interior bay of the wing on NASA's X-59.
A Lockheed Martin technician performs an inspection of an interior bay of the wing of NASA’s X-59 Quiet SuperSonic Technology airplane before the bay’s surface skin is installed. The X-59 is under construction at the company’s Skunk Works factory in California.
Credits: Lockheed Martin

They are the kind of moments that prompt you to reflect on your work so far, bask in the glow of your accomplishment, and be inspired to continue toward the end so you can see how what you once only envisioned on paper has become reality.

Such a key milestone moment was reached Nov. 5 for the team putting together NASA’s X-59 Quiet SuperSonic Technology airplane at Lockheed Martin’s Skunk Works factory in Palmdale, California.

On that day technicians finished major work on the wing, closing up parts of the wing’s interior that will serve as the airplane’s fuel tanks and are intended to never be touched again by human hands.

“The fact this is the first time we’ve reached a milestone like this in which we won’t see these parts or have access to this area again is why this is so important to us. It reminds us the X-59 really is coming together,” said Steve Macpherson, a senior Lockheed Martin manager.

Macpherson leads the Lockheed Martin team building the X-59 under a $247.5 million contract with NASA.

The fact the wing has hit this milestone in its assembly – the first major system of the airplane to do so – now allows other key components of the airplane including the fuselage and tail assembly to be joined together. The company is targeted to finish assembly, conduct test flights, and deliver the plane to NASA between now and sometime during 2023.

The X-59 is designed to generate supersonic sound waves that are so quiet people on the ground will hear them as sonic thumps – if they hear anything at all. Eventually, the X-59 will be flown over select communities to measure public perception of the sound.

Results will be given to regulators to use in determining new rules that could allow commercial faster-than-sound air travel over land.

The airplane’s shape is the key to its low booms and a large part of that shape is reflected in the contours of the X-59’s wing, especially its lower surface. Yet while the physics behind the wing’s shape is complex, assembling the wing itself was more-or-less straightforward.

A pair of Lockheed Martin technicians attach an upper wing skin panel to NASA’s X-59.
A pair of Lockheed Martin technicians attach an upper wing skin panel to NASA’s X-59 Quiet SuperSonic Technology airplane as construction continues on the experimental aircraft at the company’s Skunk Works factory in California.
Credits: Lockheed Martin

But that doesn’t mean it was easy. The wing – indeed, the entire airplane – isn’t being built as part of some mass production factory line. Instead, the assembly process resembles something more akin to a hand-crafted work of art.

“Great care had to be taken to ensure the wing skins were precisely in the position, orientation, and smoothness as designed so the wing’s shape will help produce the intended low boom,” Macpherson said.

“We went through multiple checks to verify the engineering requirements had been met and that the fuel tanks were sealed properly and would hold pressure. Then, just prior to final installation of each skin to close the fuel bays, we put at least four sets of eyes in each bay to ensure nothing was left behind that wasn’t supposed to be there,” he said.  

Manufacturing the composite wing surfaces to a precise shape and attaching them to the spars that make up the wing’s interior framework was aided to great effect by robotic systems with names like Mongoose and COBRA.

“That’s a kind of perfect combination of names, right?” said Jay Brandon, NASA’s chief engineer for the project office responsible for the X-59. “These systems have been of great help to the construction by being able to do things precisely, over and over again.”

For example, Mongoose is a commercially available tool Lockheed Martin used to layup the composite wing skins with their complex geometry, a process that took full advantage of the device’s ability to work in five directions and use ultraviolet light to bond the composite material as it moved along.

Meanwhile, COBRA – which is short for Combined Operation: Bolting and Robotic AutoDrill system – could automatically produce the holes that allowed the skins to be attached to the wing’s frame. Normally a labor-intensive process that took time, COBRA only needed about 20 seconds to create each of the thousands of needed holes.

Time and labor savers like COBRA have been particularly valuable given the X-59’s one-of-kind nature compounded by a global pandemic interfering with workforce scheduling and availability, Brandon said.

The surface skin panels that seal the wing's interior to be used as the X-59's fuel tank has finished installation.
Attainment of a major milestone in the construction of NASA’s X-59 Quiet SuperSonic Technology airplane is evident in this image of the aircraft’s wing. Lockheed Martin technicians at the company’s Skunk Works factory in California have finished installing the surface skin panels that seal the wing’s interior to be used as the X-59’s fuel tank.
Credits: Lockheed Martin

“The first time you build an airplane, even though it’s ‘just’ an airplane, there’s lots of challenges in getting all the parts to fit the way they should. And there’s always the human element where somebody has a problem that has to be solved,” he said.

Brandon noted that Lockheed Martin’s Skunk Works philosophy, which keeps those who design and those who build working closely together, has worked well and kept NASA in the loop at every step – all of which made the wing-related milestone possible.

“It’s not just NASA looking over a Lockheed shoulder trying to find errors. It’s watching what’s going on, making suggestions, and being part of the team. It’s been really great, and I think it’s a very successful process,” Brandon said.

That process will continue as the X-59 team pushes to the next major milestone, which is expected late in the summer of 2021 when the essentially finished airplane – minus its single GE jet engine – will be taken by land to Texas for a series of structural tests.

Then it will be back to California for the final, final assembly, a paint job, and roll out leading to the initial test flights.

For now, the troubled year of 2020 is ending on a high note for everyone associated with the X-59 in the high desert of California.

“This was a significant win for the team and win for the program to see the successful close out of this wing tank portion of the wing,” Macpherson said.

Jim Banke
Aeronautics Research Mission Directorate

FONTE- NASA


Descoberto um rastro nunca visto do oxigênio em Marte

 

Descoberto um rastro nunca visto do oxigênio em Marte


Detectar a luz verde que se produz quando os raios solares interagem com os átomos de oxigênio na atmosfera da Terra é relativamente fácil. Milhões de plantas oferecem esse elemento em quantidades suficientes para causar fenômenos como as auroras polares e o traço verde visível do espaço, principalmente à noite. Entretanto, localizar um fenômeno similar em outros planetas era, até agora, uma proposta teórica que não se encaixava nas medidas experimentais. Uma modificação da orientação do instrumento NOMAD, a bordo da missão TGO-ExoMars, das agências espaciais europeia e russa, conseguiu detectar pela primeira vez o traço verde em Marte. Esse achado, publicado na Nature Astronomy, permite conceber fórmulas para identificar fontes de oxigênio em outros corpos celestes e analisar de forma mais precisa a densidade e composição da atmosfera, algo fundamental para as futuras missões que preveem a aterrissagem no planeta vermelho.

José Juan López-Moreno, do Instituto de Astrofísica da Andaluzia (IAA), começou sua carreira teorizando sobre o fenômeno do traço verde no trabalho de graduação. A tecnologia embarcada na missão europeia a Marte permitiu confirmar sua hipótese quando ele está prestes a se aposentar (mas não de deixar o estudo do espaço sideral). “Nunca se tinha observado, exceto em Vênus”, afirma o astrofísico, que colaborou da Espanha para a descoberta.

A luz do sol interage com os átomos que compõem a atmosfera e gera diferentes comprimentos de onda, segundo o elemento químico que for agitado pelos raios. No caso do oxigênio, o resultado é um traço verde que serve como sinal da existência de um gás fundamental para a vida.

“A descoberta da presença da linha verde do oxigênio atômico na atmosfera de Marte abre uma janela para o estudo do seu comportamento e da fotoquímica desse planeta”, afirma López-Moreno.

Recriação da mudança de orientação do NOMAD que permitiu a detecção do traço de oxigênio na atmosfera de Marte.
Recriação da mudança de orientação do NOMAD que permitiu a detecção do traço de oxigênio na atmosfera de Marte.CSIC

A detecção foi possível graças a uma mudança na orientação do rastreador de gases do NOMAD, um dos instrumentos que orbitam Marte desde 2016 como parte da missão europeia ExoMars. Esse dispositivo observa na vertical as colunas de nuvens, poeira e ozônio na face iluminada de Marte. A mudança de orientação para olhar o horizonte do planeta permitiu encontrar o oxigênio entre 80 e 120 quilômetros de altura.

“Nossa descrição dos mecanismos de excitação do oxigênio atmosférico é correta em um ambiente bem diferente do terrestre e, portanto, exportável a outros mundos.”
MIGUEL ÁNGEL LÓPEZ-VALVERDE, PESQUISADOR DO INSTITUTO DE ASTROFÍSICA DA ANDALUZIA

“Era esperável [pois os modelos teóricos preveem], mas difícil de observar. Por fim encontramos”, afirma Miguel Ángel López-Valverde, também pesquisador do IAA, em uma comunicação do CSIC (agência pública de pesquisa científica da Espanha). “Nossa descrição dos mecanismos de excitação do oxigênio atmosférico é correta em um ambiente bem diferente do terrestre e, portanto, exportável a outros mundos”, comenta, em referência à importância da descoberta para a busca por oxigênio em outros corpos celestes.“Encontramos uma forma nova e mais precisa de medir as concentrações de oxigênio e o seu perfil. Podemos fazer um acompanhamento da estrutura da atmosfera a partir do produto da radiação solar. Antes se usava o NOMAD para medir na vertical, mas agora, ao olhar também para o limbo, descobrimos mais informação sobre as camadas. Não procurávamos o traço verde, e sim ozônio e outros elementos, mas a descoberta é fundamental”, acrescenta López-Moreno.

Sem sinais de vida em Marte

A descoberta não significa que exista uma floresta escondida em Marte. Os pesquisadores concluem que o traço verde ocorre pela dissociação das moléculas de dióxido de carbono, as mais abundantes na atmosfera marciana. É durante a ruptura destas moléculas que os átomos de oxigênio interagem com a radiação do sol e geram a luz esverdeada.

Não é a primeira vez que o IAA põe em seu lugar quem gostaria de ver sinais de vida no planeta vermelho. Há um ano, a agência espacial norte-americana (NASA) informou da detecção, por parte do rover Curiosity (o laboratório móvel situado na superfície de Marte), da “maior quantidade de metano já medida durante a missão”. O metano pode ser de origem orgânica ou geológica. A primeira hipótese despertou o sonho de ter detectado indícios de vida no planeta vermelho. Entretanto, a equipe do mesmo orbitador que agora descobriu o traço do oxigênio desmentiu essa possibilidade. “Não há metano em Marte nem houve nos últimos 350 anos”, afirmou López-Moreno na ocasião.

Uma pesquisa publicada na Nature e avalizada por quase meia centena de cientistas refletiu que as medições publicadas pela Nasa “contradizem a física atmosférica mais elementar, já que é impossível que só esteja concentrado em uma zona”, segundo López-Moreno. Pode ter sido um erro na leitura da espectrografia, ou que a fonte do gás seja o próprio jipe Curiosity, já que pode concentrar até 1.000 vezes mais metano que o que poderia existir na atmosfera.

Mas, independentemente da existência de vestígios de vida ou de gases fundamentais para a vida, a descoberta da linha verde revelou, além da validade dos modelos da física atômica, uma nova forma de aplicar a técnica que, na Terra e em outros planetas, possibilita precisar a composição atmosférica em zonas inacessíveis para as medições diretas. “Mais uma vez, a exploração espacial permitiu resolver problemas de outra forma insolúveis”, destaca López-Moreno.

“Se a linha verde em um exoplaneta fosse muito mais intensa que a emissão que acabamos de descobrir em Marte, comparável ou maior que a intensidade observada na Terra, poderia ser um indicador indireto de algum tipo de vida.”
MIGUEL ÁNGEL LÓPEZ-VALVERDE

“Pode ter grande interesse para o estudo das atmosferas dos planetas em outros sistemas solares e a busca de sinais de vida. Se a linha verde em um exoplaneta fosse muito mais intensa que a emissão que acabamos de descobrir em Marte, comparável ou maior que a intensidade observada na Terra, poderia ser um indicador indireto de algum tipo de vida capaz de realizar algum tipo de fotossíntese”, aponta López-Valverde.

“Além disso, conhecer o comportamento e a composição da atmosfera é fundamental, por exemplo, para conhecer a distribuição da pressão, um elemento fundamental para planejar as aterrissagens”, acrescenta o astrônomo.

O objetivo principal da segunda parte da missão ExoMars, que decolará em 2022, após um adiamento, é situar no planeta o rover Rosalind Franklin, que inclui um perfurador da superfície e um laboratório de busca de vida presente ou passada.